377 research outputs found

    Computational neurorehabilitation: modeling plasticity and learning to predict recovery

    Get PDF
    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity

    Use It and Improve It or Lose It: Interactions between Arm Function and Use in Humans Post-stroke

    Get PDF
    “Use it and improve it, or lose it” is one of the axioms of motor therapy after stroke. There is, however, little understanding of the interactions between arm function and use in humans post-stroke. Here, we explored putative non-linear interactions between upper extremity function and use by developing a first-order dynamical model of stroke recovery with longitudinal data from participants receiving constraint induced movement therapy (CIMT) in the EXCITE clinical trial. Using a Bayesian regression framework, we systematically compared this model with competitive models that included, or not, interactions between function and use. Model comparisons showed that the model with the predicted interactions between arm function and use was the best fitting model. Furthermore, by comparing the model parameters before and after CIMT intervention in participants receiving the intervention one year after randomization, we found that therapy increased the parameter that controls the effect of arm function on arm use. Increase in this parameter, which can be thought of as the confidence to use the arm for a given level of function, lead to increase in spontaneous use after therapy compared to before therapy

    New approximations for the cone of copositive matrices and its dual

    Full text link
    We provide convergent hierarchies for the cone C of copositive matrices and its dual, the cone of completely positive matrices. In both cases the corresponding hierarchy consists of nested spectrahedra and provide outer (resp. inner) approximations for C (resp. for its dual), thus complementing previous inner (resp. outer) approximations for C (for the dual). In particular, both inner and outer approximations have a very simple interpretation. Finally, extension to K-copositivity and K-complete positivity for a closed convex cone K, is straightforward.Comment: 8

    Cross-lingual legal information retrieval using a WordNet architecture.

    Get PDF
    FDR Regulering van internationaal economisch verkeer - ou

    Sharing Cyber Threat Intelligence under the General Data Protection Regulation

    Get PDF
    Sharing Cyber Threat Intelligence (CTI) is a key strategy for improving cyber defense, but there are risks of breaching regulations and laws regarding privacy. With regulations such as the General Data Protection Regulation (GDPR) that are designed to protect citizens’ data privacy, the managers of CTI datasets need clear guidance on how and when it is legal to share such information. This paper defines the impact that GDPR legal aspects may have on the sharing of CTI. In addition, we define adequate protection levels for sharing CTI to ensure compli- ance with the GDPR. We also present a model for evaluating the legal require- ments for supporting decision making when sharing CTI, which also includes advice on the required protection level. Finally, we evaluate our model using use cases of sharing CTI datasets between entities

    Cross-lingual legal information retrieval using a WordNet architecture

    Get PDF
    FDR Regulering van internationaal economisch verkeer - ou

    Stroke Rehabilitation Reaches a Threshold

    Get PDF
    Motor training with the upper limb affected by stroke partially reverses the loss of cortical representation after lesion and has been proposed to increase spontaneous arm use. Moreover, repeated attempts to use the affected hand in daily activities create a form of practice that can potentially lead to further improvement in motor performance. We thus hypothesized that if motor retraining after stroke increases spontaneous arm use sufficiently, then the patient will enter a virtuous circle in which spontaneous arm use and motor performance reinforce each other. In contrast, if the dose of therapy is not sufficient to bring spontaneous use above threshold, then performance will not increase and the patient will further develop compensatory strategies with the less affected hand. To refine this hypothesis, we developed a computational model of bilateral hand use in arm reaching to study the interactions between adaptive decision making and motor relearning after motor cortex lesion. The model contains a left and a right motor cortex, each controlling the opposite arm, and a single action choice module. The action choice module learns, via reinforcement learning, the value of using each arm for reaching in specific directions. Each motor cortex uses a neural population code to specify the initial direction along which the contralateral hand moves towards a target. The motor cortex learns to minimize directional errors and to maximize neuronal activity for each movement. The derived learning rule accounts for the reversal of the loss of cortical representation after rehabilitation and the increase of this loss after stroke with insufficient rehabilitation. Further, our model exhibits nonlinear and bistable behavior: if natural recovery, motor training, or both, brings performance above a certain threshold, then training can be stopped, as the repeated spontaneous arm use provides a form of motor learning that further bootstraps performance and spontaneous use. Below this threshold, motor training is “in vain”: there is little spontaneous arm use after training, the model exhibits learned nonuse, and compensatory movements with the less affected hand are reinforced. By exploring the nonlinear dynamics of stroke recovery using a biologically plausible neural model that accounts for reversal of the loss of motor cortex representation following rehabilitation or the lack thereof, respectively, we can explain previously hard to reconcile data on spontaneous arm use in stroke recovery. Further, our threshold prediction could be tested with an adaptive train–wait–train paradigm: if spontaneous arm use has increased in the “wait” period, then the threshold has been reached, and rehabilitation can be stopped. If spontaneous arm use is still low or has decreased, then another bout of rehabilitation is to be provided

    Measuring Habitual Arm Use Post-stroke With a Bilateral Time-Constrained Reaching Task

    Get PDF
    Background: Spontaneous use of the more-affected arm is a meaningful indicator of stroke recovery. The Bilateral Arm Reaching Test (BART) was previously developed to quantify arm use by measuring arm choice to targets projected over a horizontal hemi-workspace. In order to improve clinical validity, we constrained the available movement time, thereby promoting more spontaneous decision making when selecting between the more-affected and less affected arm during the BART.Methods: Twenty-two individuals with mild to moderate hemiparesis were tested with the time-based BART in three time-constraint conditions: no-time constraint, medium, and fast conditions. Arm use was measured across three sessions with a 2-week interval in a spontaneous choice block, in which participants were instructed to use either the more-affected or the less-affected arm to reach targets. We tested the effect of time-constraint condition on the more-affected arm use, external validity of the BART with the Actual Amount of Use Test (AAUT), and test-retest reliability across the three test sessions.Results: The fast condition in the time-based BART showed reduced use of the more-affected arm compared to the no-time constraint condition P < 0.0001) and the medium condition P = 0.0006; Tukey post hoc analysis after mixed-effect linear regression). In addition, the fast condition showed strong correlation with the AAUT r = 0.829, P < 0.001), and excellent test-retest reliability (ICC = 0.960, P < 0.0001).Conclusion: The revised BART with a time-restricted fast condition provides an objective, accurate, and repeatable measure of spontaneous arm use in individuals with chronic stroke hemiparesis

    Using Linguistic Information and Machine Learning Techniques to Identify Entities from Juridical Documents

    Get PDF
    Information extraction from legal documents is an important and open problem. A mixed approach, using linguistic information and machine learning techniques, is described in this paper. In this approach, top-level legal concepts are identified and used for document classifica- tion using Support Vector Machines. Named entities, such as, locations, organizations, dates, and document references, are identified using se- mantic information from the output of a natural language parser. This information, legal concepts and named entities, may be used to popu- late a simple ontology, allowing the enrichment of documents and the creation of high-level legal information retrieval systems. The proposed methodology was applied to a corpus of legal documents - from the EUR-Lex site – and it was evaluated. The obtained results were quite good and indicate this may be a promising approach to the legal information extraction problem

    The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations

    Get PDF
    This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedicationIt is commonly accepted that the Inferior Olive (IO) provides a timing signal to the cerebellum. Stable subthreshold oscillations in the IO can facilitate accurate timing by phase-locking spikes to the peaks of the oscillation. Several theoretical models accounting for the synchronized subthreshold oscillations have been proposed, however, two experimental observations remain an enigma. The first is the observation of frequent alterations in the frequency of the oscillations. The second is the observation of constant phase differences between simultaneously recorded neurons. In order to account for these two observations we constructed a canonical network model based on anatomical and physiological data from the IO. The constructed network is characterized by clustering of neurons with similar conductance densities, and by electrical coupling between neurons. Neurons inside a cluster are densely connected with weak strengths, while neurons belonging to different clusters are sparsely connected with stronger connections. We found that this type of network can robustly display stable subthreshold oscillations. The overall frequency of the network changes with the strength of the inter-cluster connections, and phase differences occur between neurons of different clusters. Moreover, the phase differences provide a mechanistic explanation for the experimentally observed propagating waves of activity in the IO. We conclude that the architecture of the network of electrically coupled neurons in combination with modulation of the inter-cluster coupling strengths can account for the experimentally observed frequency changes and the phase differences.Peer reviewedFinal Published versio
    • …
    corecore